Assistant Professor of Molecular Biology
His current research focus is examining the intracellular trafficking of the cancer-related protein CD147 and a family of monocarboxylate transporters. Due to the excellent work of his students, a new trafficking partner of CD147 has recently been identified. His other research interests include messenger RNA stability, microRNAs, and other gene expression regulation mechanisms. He has advised students on a wide array of projects such as generating neurons in tissue culture from stem cells, making stem cells from somatic cells, cricket epigenetics, and biological animation. Outside of the laboratory, his interests lie in electronics, art, and zymurgy.
A soundscape is an environment of sounds with emphasis on the way it is perceived, understood, and inhabited by individuals, groups, societies, or non-humans. This course invites participants from diverse disciplines to investigate their sonic environments as artist-as-scientist or scientist-as-artist, sensing, surveying and responding to a range of mediums. This course will explore bridges between sound, art, and ecology. Drawing from the fields of sound art, eco-musicology, acoustic and soundscape ecology, physics, and environmental art, students are encouraged to consistently experiment through small, prompt driven projects, and collectively directed rambles. How is the landscape organized and transformed by sound? How is noise pollution impacting ecosystems, organisms, and human health and communities? In what ways do observation, deep listening and critical listening enhance our understanding of the world? Students will be given a wide range of possibilities for course projects such as conservation, ecology and environmental studies, cultural perspectives, art-making, music-making and sound composition. This course requires walking in variable terrain and weather. (keywords: sound, art, ecology, science)
This introductory course will explore the process of doing scientific research in a molecular biology lab. Students will learn numerous techniques in the lab, including DNA isolation, PCR, gel electrophoresis, restriction enzyme digests, cloning, and basic microscopy. Students will engage in a semester-long laboratory research project within a cancer biology gene cloning context. Students will perform protocols, collect and analyze data, and report their conclusions in written and oral formats. This course is intended for students with little or no experience in a molecular biology lab, and it will prepare students for other laboratory courses including Cell Biology and Biochemistry. Students must be able to come into the laboratory to complete work. key words: laboratory, genetic engineering, cloning, neuroscience, cancer, Biomedical research
Time and Narrative: Pandemics: Main Question: How do people, communities, and cultures understand, make sense of, and react to pandemics, both historically and now, given COVID-19? Course Description: The shock of suffering and death from the COVID-19 pandemic prompts many to speak of it as unprecedented. In fact, there have been many instances of global pandemics, from the Bubonic Plague of the Middle Ages to the Great Influenza of 1918 to the AIDS pandemic beginning in the 1980s. This class will examine historical, social, cultural, and scientific perspectives on how humans have understood and reacted to infectious disease across cultures and centuries and will provide insight as we seek to reconstruct our lives and societies. We will also investigate how our own particular identity and positionality lead to different consequences for each of us.This transdisciplinary course will involve research, hands-on investigation, and creative expression. We will focus on pandemics from multiple perspectives - biology, epidemiology, and public health policy, as well as history, politics, ethnography, oral history, literature, and other expressive arts. Students will undertake individualized study-analyze scientific data, conduct research in archives and via social media, interview pandemic survivors, and other projects -- and reflect on their own experiences and collectively share their findings through public forums, media, scholarship, creative writing, and journalism. Approaches: #epidemiology, #publicHealth, #history, #journalism, #ethnography
The structures and processes inside human cells determine how we function (or dysfunction) in the world, and yet they were only discovered in the last few hundred years. We will discover what is known about how they work through primary literature, group work, and laboratory exercises. We will also discuss what is still not known and how scientists work to find the answers. This course is designed with an active learning approach, so students should come prepared to learn a lot of the content through independent activities rather than lectures or textbooks.
Biochemistry is the study of the molecules and chemical reactions of life. Considering the vast diversity of living organisms, one might also expect them to be composed of significantly different biomolecules, and to use unique mechanisms for obtaining energy and communicating different biological information. To the contrary, the principles and language of biochemistry are common to all life: in general, the same chemical compounds and the same metabolic processes found in bacteria exist in organisms as distantly related as whales. Topics will include the structure and function of proteins and carbohydrates, metabolism and bioenergetics within the context of cells. Most topics will be explored in conjunction with laboratory work. Students enrolling in this course must also enroll in Cell Biology (NS-258).
Cancer is currently the second largest cause of death in the United States. One would think that science would have developed a cure for cancer by now, but it hasn't. Why is developing treatment options so difficult? This course will address the biology of malignancy and treatment including some traditional and cutting-edge strategies. We will cover some of the ethical and social justice considerations of disease research including some of the darker examples from cancer research's past. We will also work in the laboratory to study cancer first-hand. Students will begin to learn to independently read primary literature, write papers, and perform presentations.