Close Menu

You have questions. We have answers.

Request Information
Visiting Assistant Professor of Physics

Kaća Bradonjić

Visiting Assistant Professor of Physics

Natural Science

kbNS@hampshire.edu

Mail Code NS

Kaca Bradonjic

Cole Science Center 306

413.559.6211

Situated at the intersection of physics and philosophy, Kaća’s research is focused on foundational questions of the physical interpretation of the mathematical formulations of gauge theories of gravity, and particularly on the role of conformal and projective structures.

Kaća’s artistic work explores the use of metaphor as means of understanding the relations among physical, intellectual, and emotional spaces. A project of note is Projections, a series of paintings based on impressions of academic talks.

Prior to coming to Hampshire College, she taught at Wellesley College and Boston University. More details about her work can be found at www.kacabradonjic.com.

- Physics I: Classical and Quantum Mechanics with Lab
Physics I covers the fundamental principles of physics by teaching classical mechanics, while emphasizing the correspondence to quantum physics. The topics will include the essence of measurement, properties of elementary constituents of Nature (particles and probability waves), mechanics (motion and its causes), and fundamental interactions. Special focus will be placed on general principles, such as the conservation laws (energy, linear and angular momentum, spin) and the superposition principle. Students will approach these topics in an active-learning style, wherein hands-on lab activities are integrated with problem-solving sessions and mini-lectures. The course aims itself at all who seek a basic understanding of the fundamental laws of physics, including students on pre-professional track, students who focus on physical or mathematical sciences, and students who have philosophical interests in quantum mechanics. Readings and written work will be assigned for each class. Keywords: physics, science

- Symmetries of Nature: An Introduction to Group Theory
Nature seems abundant in symmetry, manifesting not only in spatial symmetries of living beings, but also in visual art, music, and even social interactions (do to others as you would.). In an intuitive, hands-on approach this course will introduce and develop the key ideas of group theory, a branch of mathematics used for the study of symmetry. It will cover the core definitions (subgroups, quotient groups, cosets, isomorphisms, and homomorphisms), and a detailed study of certain types of groups (finite groups, cyclic groups, permutation groups, and abelian groups). Interweaving theory and application, we will understand the value of group theory in the fields of chemistry, physics, and biology, as well as its place in music and art. The course is suited both to students with concentrations in math and physical sciences, and to those who want to understand symmetry and its applications in an accessible, yet formal way. Key words: math, symmetry, science

- The Science of Space and Time
What are space and time? This course will follow the evolution of the scientific understanding of these concepts which are so fundamental to our experience of the world and of ourselves. Our journey will trace the intellectual paths of physicists who grappled with these questions, including Newton and Einstein, taking us from the conceptions of space and time familiar from our daily experiences to the modern understanding of four-dimensional spacetime as described by the special theory of relativity. Occasionally we will look for insights from philosophers and for inspiration from writers and artist. Since mathematics is the language of physics, we will use basic high school algebra and graphs. No prior exposure to physics is necessary. This course is best suited for students so fascinated with the ideas of space and time that they are willing to grapple with abstract concepts and sometimes tedious algebra in order to gain a basic, but genuine understanding of special relativity. Keywords: physics, space, time, relativity

- Linear Algebra
This course develops the basic geometric, algebraic, and computational foundations of vector spaces and matrices and applies them to a wide range of problems and models. In addition to containing real finite dimensional vector spaces, linear independence, linear transformations and inner product spaces, the course will cover eigenvalues and eigenvectors, diagonalization, and linear programming theory with applications to graph theory, game theory, differential equations, Markov chains, and least squares approximation. Basic programming will be taught and used throughout the course. Readings and written work will be assigned for each class. Keywords: math, linear algebra

- On What There Is: Physics and Metaphysics
What are the basic features of reality? Where and when do these things exist? How and why do they change? This course will explore the ways that physicists and philosophers have answered these questions and have dealt with reconciling incompatible perspectives. Students will engage these questions through reading, writing, observation, mathematical problem-solving, art-making, and active discussion. We will use high school algebra and graphs to understand the fundamentals of Einstein's special theory of relativity and quantum mechanics; and we will consider philosophical theories about the nature of reality, time, space, and change through texts by Western and non-Western philosophers. Along the way, we will ask: How do we decide what is real? Does observation take precedence over theory (or vice versa)? What role do models and imagination play in this inquiry? What are the structures of authority that legitimize scientific and philosophical claims? No prior exposure to physics or philosophy is required.

- Physics II: Fundamentals of Electricity and Magnetism with Lab
Fundamental forces of electricity and magnetism govern the interactions of atoms and molecules, and consequently most of macroscopic processes, from biological to astrophysical. Practical applications of electromagnetic theory include electric motors, generators, communication systems, telescopes, and medical diagnostic tools, such as EKG and MRI. Physics II is a calculus-based introductory course on electromagnetic theory and covers topics such as electromagnetic induction, electric circuits, and basic optics, both physical and geometric. The course will approach these topics in the active-learning style, in which hands-on lab activities are integrated with problem-solving sessions and mini-lectures. It is aimed at all students seeking the basic understanding of the electromagnetic theory, and particularly at those on a premed track or focusing on any of the physical sciences. Readings and written work will be assigned for each class.

- Field Study Semester
- Physics of Color
This course will explore the concept of color and its use in the visual arts from the perspective of a physicist. We will cover the basics of wave mechanics and the electromagnetic theory needed to describe light as an electromagnetic wave, the absorption and emission of light through quantum-mechanical processes and basic optics. We will then explore the relation between these physical principles and the fundamentals of color theory and its application in painting. Among other things, we will study the physics of additive and subtractive color mixing: the basics of saturation, hue and brightness: the mechanisms by which the perception of color emerges from the interaction of light with the retina and the processing of the resulting neural signals in the brain. The course will be of interest to students with either science or art concentrations who are interested in the interplay between the two. High school algebra and trigonometry will be reviewed and used throughout the course. Readings and written work will be assigned for each class.

- Physics I: Quantum and Classical Mechanics with Lab
Physics I covers the fundamental principles of physics by teaching quantum mechanics, while emphasizing the correspondence to classical physics. The topics will include the essence of measurement, properties of elementary constituents of Nature (particles and probability waves), mechanics (motion and its causes), and fundamental interactions. Special focus will be placed on general principles, such as the conservation laws (energy, linear and angular momentum, spin) and the superposition principle. Students will approach these topics in an active-learning style, wherein hands-on lab activities are integrated with problem-solving sessions and mini-lectures. The course aims itself at all who seek a basic understanding of the fundamental laws of physics, including students on pre-professional track, students who focus on physical or mathematical sciences, and students who have philosophical interests in quantum mechanics. Readings and written work will be assigned for each class.